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Healthy biological systems exhibit complex patterns of variability that can be described by 
mathematical chaos. Heart rate variability (HRV) consists of changes in the time intervals 
between consecutive heartbeats called interbeat intervals (IBIs). A healthy heart is not 
a metronome. The oscillations of a healthy heart are complex and constantly changing, 
which allow the cardiovascular system to rapidly adjust to sudden physical and psycho-
logical challenges to homeostasis. This article briefly reviews current perspectives on 
the mechanisms that generate 24 h, short-term (~5 min), and ultra-short-term (<5 min) 
HRV, the importance of HRV, and its implications for health and performance. The 
authors provide an overview of widely-used HRV time-domain, frequency-domain, and 
non-linear metrics. Time-domain indices quantify the amount of HRV observed during 
monitoring periods that may range from ~2  min to 24  h. Frequency-domain values 
calculate the absolute or relative amount of signal energy within component bands. 
Non-linear measurements quantify the unpredictability and complexity of a series of IBIs. 
The authors survey published normative values for clinical, healthy, and optimal per-
formance populations. They stress the importance of measurement context, including 
recording period length, subject age, and sex, on baseline HRV values. They caution that 
24 h, short-term, and ultra-short-term normative values are not interchangeable. They 
encourage professionals to supplement published norms with findings from their own 
specialized populations. Finally, the authors provide an overview of HRV assessment 
strategies for clinical and optimal performance interventions.

Keywords: biofeedback, complexity, heart rate variability, non-linear measurements, normative values, optimal 
performance

HeART RATe vARiABiLiTY

Heart rate is the number of heartbeats per minute. Heart rate variability (HRV) is the fluctuation 
in the time intervals between adjacent heartbeats (1). HRV indexes neurocardiac function and is 
generated by heart-brain interactions and dynamic non-linear autonomic nervous system (ANS) 
processes. HRV is an emergent property of interdependent regulatory systems which operate on 
different time scales to help us adapt to environmental and psychological challenges. HRV reflects 
regulation of autonomic balance, blood pressure (BP), gas exchange, gut, heart, and vascular tone, 
which refers to the diameter of the blood vessels that regulate BP, and possibly facial muscles (2).

A healthy heart is not a metronome. The oscillations of a healthy heart are complex and non-
linear. A healthy heart’s beat-to-beat fluctuations are best described by mathematical chaos (3). 
The variability of non-linear systems provides the flexibility to rapidly cope with an uncertain and 
changing environment (4). While healthy biological systems exhibit spatial and temporal complexity, 
disease can involve either a loss or increase of complexity (5).
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TABLe 1 | HRV time-domain measures.

Parameter Unit Description

SDNN ms Standard deviation of NN intervals

SDRR ms Standard deviation of RR intervals

SDANN ms Standard deviation of the average NN intervals for 
each 5 min segment of a 24 h HRV recording

SDNN index (SDNNI) ms Mean of the standard deviations of all the NN 
intervals for each 5 min segment of a 24 h HRV 
recording

pNN50 % Percentage of successive RR intervals that differ by 
more than 50 ms

HR Max − HR Min bpm Average difference between the highest and lowest 
heart rates during each respiratory cycle

RMSSD ms Root mean square of successive RR interval 
differences

HRV triangular index Integral of the density of the RR interval histogram 
divided by its height

TINN ms Baseline width of the RR interval histogram

Interbeat interval, time interval between successive heartbeats; NN intervals, interbeat 
intervals from which artifacts have been removed; RR intervals, interbeat intervals 
between all successive heartbeats.

TABLe 2 | HRV frequency-domain measures.

Parameter Unit Description

ULF power ms2 Absolute power of the ultra-low-frequency band (≤0.003 Hz)

VLF power ms2 Absolute power of the very-low-frequency band 
(0.0033–0.04 Hz)

LF peak Hz Peak frequency of the low-frequency band (0.04–0.15 Hz) 

LF power ms2 Absolute power of the low-frequency band (0.04–0.15 Hz) 

LF power nu Relative power of the low-frequency band (0.04–0.15 Hz) in 
normal units

LF power % Relative power of the low-frequency band (0.04–0.15 Hz)

HF peak Hz Peak frequency of the high-frequency band (0.15–0.4 Hz)

HF power ms2 Absolute power of the high-frequency band (0.15–0.4 Hz)

HF power nu Relative power of the high-frequency band (0.15–0.4 Hz) in 
normal units

HF power % Relative power of the high-frequency band (0.15–0.4 Hz)

LF/HF % Ratio of LF-to-HF power
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Higher HRV is not always better since pathological condi-
tions can produce HRV. When cardiac conduction abnormalities 
elevate HRV measurements, this is strongly linked to increased 
risk of mortality (particularly among the elderly). Close examina-
tion of electrocardiogram (ECG) morphology can reveal whether 
elevated HRV values are due to problems like atrial fibrillation (6).

An optimal level of HRV is associated with health and self-
regulatory capacity, and adaptability or resilience. Higher levels 
of resting vagally-mediated HRV are linked to performance of 
executive functions like attention and emotional processing by 
the prefrontal cortex (1). Afferent information processing by the 
intrinsic cardiac nervous system can modulate frontocortical 
activity and impact higher-level functions (7).

A BRieF OveRview OF HRv MeTRiCS

We can describe 24 h, short-term (ST, ~5 min) or brief, and ultra- 
short-term (UST, <5  min) HRV using time-domain, frequency-
domain, and non-linear measurements. Since longer recording 
epochs better represent processes with slower fluctuations  
(e.g., circadian rhythms) and the cardiovascular system’s response 
to a wider range of environment stimuli and workloads, short-term 
and ultra-short-term values are not interchangeable with 24 h values.

Time-domain indices of HRV quantify the amount of variability 
in measurements of the interbeat interval (IBI), which is the time 
period between successive heartbeats (see Table 1). These values 
may be expressed in original units or as the natural logarithm 
(Ln) of original units to achieve a more normal distribution (8).

Frequency-domain measurements estimate the distribu-
tion of absolute or relative power into four frequency bands. 
The Task Force of the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology (1996) 
divided heart rate (HR) oscillations into ultra-low-frequency 
(ULF), very-low-frequency (VLF), low-frequency (LF), and 
high-frequency (HF) bands (see Table 2).

Power is the signal energy found within a frequency band. 
Frequency-domain measurements can be expressed in absolute or 
relative power. Absolute power is calculated as ms squared divided 
by cycles per second (ms2/Hz). Relative power is estimated as the 
percentage of total HRV power or in normal units (nu), which 
divides the absolute power for a specific frequency band by the 
summed absolute power of the LF and HF bands. This allows us 
to directly compare the frequency-domain measurements of two 
clients despite wide variation in specific band power and total 
power among healthy, age-matched individuals (9).

The ULF band (≤0.003 Hz) indexes fluctuations in IBIs with a 
period from 5 min to 24 h and is measured using 24 h recordings 
(10). The VLF band (0.0033–0.04 Hz) is comprised of rhythms with  
periods between 25 and 300 s. The LF band (0.04–0.15 Hz) is com-
prised of rhythms with periods between 7 and 25 s and is affected 
by breathing from ~3 to 9 bpm. Within a 5 min sample, there are 
12–45 complete periods of oscillation (9). The HF or respiratory 
band (0.15–0.40 Hz) is influenced by breathing from 9 to 24 bpm 
(11). The ratio of LF to HF power (LF/HF ratio) may estimate the 
ratio between sympathetic nervous system (SNS) and parasympa-
thetic nervous system (PNS) activity under controlled conditions. 
Total power is the sum of the energy in the ULF, VLF, LF, and 
HF bands for 24 h and the VLF, LF, and HF bands for short-term 
recordings (12).

Finally, non-linear measurements (see Table  3) allow us to 
quantify the unpredictability of a time series (13).

SOURCeS OF HRv

This section explores the sources of short-term and 24 h HRV 
measurements. The authors will not separately discuss ultra-
short-term HRV measurements since they are controversial 
proxies for short-term HRV values and there is an absence of 
research concerning their physiological origin.

SHORT-TeRM HRv

Two distinct but overlapping processes generate short-term 
HRV measurements. The first source is a complex and dynamic 
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TABLe 3 | HRV non-linear measures.

Parameter Unit Description

S ms Area of the ellipse which represents total HRV
SD1 ms Poincaré plot standard deviation perpendicular the line of 

identity
SD2 ms Poincaré plot standard deviation along the line of identity
SD1/SD2 % Ratio of SD1-to-SD2
ApEn Approximate entropy, which measures the regularity and 

complexity of a time series
SampEn Sample entropy, which measures the regularity and 

complexity of a time series
DFA α1 Detrended fluctuation analysis, which describes short-term 

fluctuations
DFA α2 Detrended fluctuation analysis, which describes long-term 

fluctuations
D2  Correlation dimension, which estimates the minimum number 

of variables required to construct a model of system dynamics
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relationship between the sympathetic and parasympathetic 
branches. The second source includes the regulatory mechanisms 
that control HR via respiratory sinus arrhythmia (RSA), the baro-
receptor reflex (negative-feedback control of BP), and rhythmic 
changes in vascular tone (2). RSA refers to the respiration-driven 
speeding and slowing of the heart via the vagus nerve (14).

Dynamic Autonomic Relationship
In a healthy human heart, there is a dynamic relationship between 
the PNS and SNS. PNS control predominates at rest, resulting in 
an average HR of 75 bpm. The PNS can slow the heart to 20 or 
30 bpm, or briefly stop it (15). This illustrates the response called 
accentuated antagonism (16).

Parasympathetic nerves exert their effects more rapidly (<1 s) 
than sympathetic nerves (>5  s) (17). Since these divisions can 
produce contradictory actions, like speeding and slowing the 
heart, their effect on an organ depends on their current balance 
of activity. While the SNS can suppress PNS activity, it can also 
increase PNS reactivity (18). Parasympathetic rebound may occur 
following high levels of stress, resulting in increased nighttime 
gastric activity (19) and asthma symptoms (20).

The relationship between the PNS and SNS branches is com-
plex (both linear and non-linear) and should not be described as 
a “zero sum” system illustrated by a teeter-totter. Increased PNS 
activity may be associated with a decrease, increase, or no change 
in SNS activity. For example, immediately following aerobic exer-
cise, HR recovery involves PNS reactivation while SNS activity 
remains elevated (21, 22).

Likewise, teaching clients to breathe slowly when they experi-
ence high levels of SNS activity can engage both branches and 
increase RSA. This is analogous to a Formula 1® driver speeding 
through a turn while gently applying the left foot to the brake, 
a maneuver called “left-foot braking.” The complex relationship 
between SNS and PNS nerve activity means that the ratio between 
LF and HF power will not always index autonomic balance (21).

Regulatory Mechanisms
The autonomic, cardiovascular, central nervous, endocrine, and res-
piratory systems, and baroreceptors and chemoreceptors influence  

HRV over a short time period and contribute to the very-low to high 
frequencies of the HRV spectrum (12). Baroreceptors, which are 
BP sensors located in the aortic arch and internal carotid arter-
ies, contribute to short-term HRV (23). When you inhale, HR 
increases. BP rises about 4–5 s later. Baroreceptors detect this rise 
and fire more rapidly. When you exhale, HR decreases. BP falls 
4–5  s later (24, 25). The baroreflex makes this acceleration and 
deceleration of the heart, called RSA, possible (14).

The baroreflex links HR, BP, and vascular tone. Oscillation 
in one cardiovascular function causes identical oscillations in 
the others (26). Baroreceptor firing due to BP changes activates 
mechanisms that change HR and vascular tone. Rising BP trig-
gers decreases in HR and vascular tone, while falling BP causes 
increases in both.

TweNTY-FOUR-HOUR HRv

Circadian rhythms, core body temperature, metabolism, the sleep 
cycle, and the renin–angiotensin system contribute to 24 h HRV 
recordings, which represent the “gold standard” for clinical HRV 
assessment (12). These recordings achieve greater predictive 
power than short-term measurements (10, 27–29). Although we 
calculate 24 h and short-term HRV measurements using the same 
mathematical formulas, they cannot substitute for each other and 
their physiological meaning can profoundly differ (9).

TiMe-DOMAiN MeASUReMeNTS

Heart rate variability time-domain indices quantify the amount 
of HRV observed during monitoring periods that may range 
from <1 min to >24 h. These metrics include the SDNN, SDRR, 
SDANN, SDNN Index, RMSSD, NN50, pNN50, HR Max − HR 
Min, the HRV triangular index (HTI), and the Triangular 
Interpolation of the NN Interval Histogram (TINN, see Table 1). 
Where appropriate, the authors reported accepted minimum 
short-term and proposed ultra-short-term measurement periods.

SDNN
The standard deviation of the IBI of normal sinus beats (SDNN) is 
measured in ms. "Normal" means that abnormal beats, like ectopic 
beats (heartbeats that originate outside the right atrium’s sinoatrial 
node), have been removed. While the conventional short-term 
recording standard is 5 min (11), researchers have proposed ultra-
short-term recording periods from 60  s (30) to 240  s (31). The 
related standard deviation of successive RR interval differences 
(SDSD) only represents short-term variability (9).

Both SNS and PNS activity contribute to SDNN and it is highly 
correlated with ULF, VLF and LF band power, and total power 
(32). This relationship depends on the measurement conditions. 
When these bands have greater power than the HF band, they 
contribute more to SDNN.

In short-term resting recordings, the primary source of the 
variation is parasympathetically-mediated RSA, especially with 
slow, paced breathing (PB) protocols (12). In 24  h recordings, 
LF band power makes a significant contribution to SDNN (9). 
The SDNN is more accurate when calculated over 24 h than dur-
ing the shorter periods monitored during biofeedback sessions. 
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Longer recording periods provide data about cardiac reactions 
to a greater range of environmental stimulation. In addition to 
cardiorespiratory regulation, extended measurement periods can 
index the heart’s response to changing workloads, anticipatory 
central nervous activity involving classical conditioning, and cir-
cadian processes, including sleep-wake cycles. Twenty-four-hour 
recordings reveal the SNS contribution to HRV (33).

The SDNN is the "gold standard" for medical stratification of 
cardiac risk when recorded over a 24 h period (11). SDNN values 
predict both morbidity and mortality. Based on 24 h monitoring, 
patients with SDNN values below 50 ms are classified as unhealthy, 
50–100  ms have compromised health, and above 100  ms are 
healthy (34). Heart attack survivors, whose 24 h measurements 
placed them in a higher category, had a greater probability of 
living during a 31-month mean follow-up period. For example, 
patients with SDNN values over 100 ms had a 5.3 times lower 
risk of mortality at follow-up than those with values under 50 ms 
(34). Does this mean that training patients to increase SDNN to 
a higher category could reduce their risk of mortality?

SDRR
The standard deviation of the IBIs for all sinus beats (SDRR), 
including abnormal or false beats, is measured in ms. As with 
the SDNN, the SDRR measures how these intervals vary over 
time and is more accurate when calculated over 24 h because this 
longer period better represents slower processes and the cardio-
vascular system’s response to more diverse environmental stimuli 
and workloads. Abnormal beats may reflect cardiac dysfunction 
or noise that masquerades as HRV.

SDANN
The standard deviation of the average normal-to-normal (NN) 
intervals for each of the 5 min segments during a 24 h recording 
(SDANN) is measured and reported in ms like the SDNN. This 
refers to IBIs calculated after artifacting the data. SDANN is not 
a surrogate for SDNN since it is calculated using 5 min segments 
instead of an entire 24 h time series (9) and it does not provide 
additional useful information (12).

SDNN index (SDNNi)
The SDNNI is the mean of the standard deviations of all the 
NN intervals for each 5 min segment of a 24-h HRV recording. 
Therefore, this measurement only estimates variability due to the 
factors affecting HRV within a 5-min period. It is calculated by 
first dividing the 24 h record into 288 5 min segments and then 
calculating the standard deviation of all NN intervals contained 
within each segment. The SDNNI is the average of these 288 val-
ues. The SDNNI primarily reflects autonomic influence on HRV. 
The SDNNI correlates with VLF power over a 24-h period (12).

NN50
The number of adjacent NN intervals that differ from each other 
by more than 50 ms (NN50) requires a 2 min epoch.

pNN50
The percentage of adjacent NN intervals that differ from each 
other by more than 50 ms (pNN50) also requires a 2-min epoch. 

Researchers have proposed ultra-short-term periods of 60 s (31). 
The pNN50 is closely correlated with PNS activity (32). It is cor-
related with the RMSSD and HF power. However, the RMSSD 
typically provides a better assessment of RSA (especially in older 
subjects) and most researchers prefer it to the pNN50 (35). This 
may be a more reliable index than short-term SDNN measure-
ments for the brief samples used in biofeedback.

RMSSD
The root mean square of successive differences between normal 
heartbeats (RMSSD) is obtained by first calculating each suc-
cessive time difference between heartbeats in ms. Then, each of 
the values is squared and the result is averaged before the square 
root of the total is obtained. While the conventional minimum 
recording is 5 min, researchers have proposed ultra-short-term 
periods of 10 s (30), 30 s (31), and 60 s (36).

The RMSSD reflects the beat-to-beat variance in HR and is 
the primary time-domain measure used to estimate the vagally 
mediated changes reflected in HRV (12). The RMSSD is identical 
to the non-linear metric SD1, which reflects short-term HRV 
(37). Twenty-four-hour RMSSD measurements are strongly cor-
related with pNN50 and HF power (27). Minimum HR is more 
strongly correlated with LnSDANN than LnRMSSD (Ln means 
the natural logarithm). Maximum HR is weakly and inconsist-
ently correlated with these time-domain measures (38).

While the RMSSD is correlated with HF power (10), the 
influence of respiration rate on this index is uncertain (39, 40). 
The RMSSD is less affected by respiration than is RSA across 
several tasks (41). The RMSSD is more influenced by the PNS 
than SDNN. Lower RMSSD values are correlated with higher 
scores on a risk inventory of sudden unexplained death in 
epilepsy (42).

NN50, pNN50, and RMSSD are calculated using the differ-
ences between successive NN intervals. Since their computation 
depends on NN interval differences, they primarily index HF HR 
oscillations, are largely unaffected by trends in an extended time 
series, and are strongly correlated (9).

HR Max − HR Min
The average difference between the highest and lowest HRs 
during each respiratory cycle (HR Max − HR Min) is especially 
sensitive to the effects of respiration rate, independent of vagus 
nerve traffic. At least a 2-min sample is required to calculate 
HR Max − HR Min. Instead of directly indexing vagal tone, it 
reflects RSA. Since longer exhalations allow greater acetylcholine 
metabolism, slower respiration rates can produce higher RSA 
amplitudes that are not mediated by changes in vagal firing.

HRv Triangular index
The HTI is a geometric measure based on 24 h recordings which 
calculates the integral of the density of the RR interval histogram 
divided by its height (11). A 5-min epoch is conventionally used 
to represent this metric (43). HTI and RMSSD can jointly dis-
tinguish between normal heart rhythms and arrhythmias. When 
HTI ≤ 20.42 and RMSSD ≤ 0.068, the heart rhythm is normal. 
When HTI > 20.42, the pattern is arrhythmic (43).
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Triangular interpolation of the  
NN interval Histogram
The TINN is the baseline width of a histogram displaying NN 
intervals (11). Like SDNN and RMSSD, contamination by only 
two artifacts within a 5-min segment can significantly distort its 
value (8).

FReQUeNCY-DOMAiN MeASUReMeNTS

Analogous to the electroencephalogram, we can use Fast Fourier 
Transformation (FFT) or autoregressive (AR) modeling to sepa-
rate HRV into its component ULF, VLF, LF, and HF rhythms that 
operate within different frequency ranges. This is analogous to 
a prism that refracts light into its component wavelengths (11).

ULF BAND

The ultra-low-frequency (ULF) band (≤0.003  Hz) requires a 
recording period of at least 24 h (12) and is highly correlated with 
the SDANN time-domain index (44). While there is no consensus 
regarding the mechanisms that generate ULF power, very slow-
acting biological processes are implicated. Circadian rhythms 
may be the primary driver of this rhythm (12). Core body tem-
perature, metabolism, and the renin–angiotensin system operate 
over a long time period and may also contribute to these frequen-
cies (11, 45). There is disagreement about the contribution by the 
PNS and SNS to this band. Different psychiatric disorders show 
distinct circadian patterns in 24 h HRs, particularly during sleep 
(46, 47).

vLF BAND

The VLF band (0.0033–0.04 Hz) requires a recording period of at 
least 5 min, but may be best monitored over 24 h. Within a 5-min 
sample, there are about 0–12 complete periods of oscillation (9). 
While all low values on all 24 h clinical HRV measurements pre-
dict greater risk of adverse outcomes, VLF power is more strongly 
associated with all-cause mortality than LF or HF power (48–51). 
The VLF rhythm may be fundamental to health (12).

Low VLF power has been shown to be associated with 
arrhythmic death (44) and PTSD (52). Low power in this band 
has been associated with high inflammation in several studies 
(53, 54). Finally, low VLF power has been correlated with low 
levels of testosterone, while other biochemical markers, such 
as those mediated by the hypothalamic–pituitary–adrenal axis  
(e.g., cortisol), have not (55).

Very-low-frequency power is strongly correlated with the 
SDNNI time-domain measure, which averages 5  min standard 
deviations for all NN intervals over a 24-h period. There is 
uncertainty regarding the physiological mechanisms responsible 
for activity within this band (10). The heart’s intrinsic nervous 
system appears to contribute to the VLF rhythm and the SNS 
influences the amplitude and frequency of its oscillations (12).

Very-low-frequency power may also be generated by physical 
activity (56), thermoregulatory, renin–angiotensin, and endothe-
lial influences on the heart (57, 58). PNS activity may contribute 

to VLF power since parasympathetic blockade almost completely 
abolishes it (59). In contrast, sympathetic blockade does not affect 
VLF power and VLF activity is seen in tetraplegics, whose SNS 
innervation of the heart and lungs is disrupted (11, 60).

Based on work by Armour (61) and Kember et al. (62, 63), the 
VLF rhythm appears to be generated by the stimulation of afferent 
sensory neurons in the heart. This, in turn, activates various levels 
of the feedback and feed-forward loops in the heart’s intrinsic 
cardiac nervous system, as well as between the heart, the extrinsic 
cardiac ganglia, and spinal column. This experimental evidence 
suggests that the heart intrinsically generates the VLF rhythm and 
efferent SNS activity due to physical activity and stress responses 
modulates its amplitude and frequency.

LF BAND

The LF band (0.04–0.15 Hz) is typically recorded over a mini-
mum 2 min period (12). This region was previously called the 
baroreceptor range because it mainly reflects baroreceptor activ-
ity during resting conditions (1). LF power may be produced 
by both the PNS and SNS, and BP regulation via baroreceptors  
(11, 57, 64, 65), primarily by the PNS (66), or by baroreflex activ-
ity alone (67). The SNS does not appear to produce rhythms much 
above 0.1 Hz, while the parasympathetic system can be observed 
to affect heart rhythms down to 0.05 Hz (20 s rhythm). In rest-
ing conditions, the LF band reflects baroreflex activity and not 
cardiac sympathetic innervation (12).

During periods of slow respiration rates, vagal activity can 
easily generate oscillations in the heart rhythms that cross over 
into the LF band (68–70). Therefore, respiratory-related efferent 
vagally mediated influences are particularly present in the LF 
band when respiration rates are below 8.5  bpm or 7  s periods  
(70, 71) or when one sighs or takes a deep breath.

HF BAND

The HF or respiratory band (0.15–0.40  Hz) is conventionally 
recorded over a minimum 1 min period. For infants and children, 
who breathe faster than adults, the resting range can be adjusted 
to 0.24–1.04  Hz (72). The HF band reflects parasympathetic 
activity and is called the respiratory band because it corresponds 
to the HR variations related to the respiratory cycle. These phasic 
HR changes are known as RSA and may not be a pure index of 
cardiac vagal control (73).

Heart rate accelerates during inspiration and slows during 
expiration. During inhalation, the cardiovascular center inhibits 
vagal outflow resulting in speeding the HR. Conversely, during 
exhalation, it restores vagal outflow resulting in slowing the HR 
via the release of acetylcholine (74). Total vagal blockage virtually 
eliminates HF oscillations and reduces power in the LF range (12).

High-frequency power is highly correlated with the pNN50 
and RMSSD time-domain measures (10). HF band power may 
increase at night and decrease during the day (1). Lower HF power 
is correlated with stress, panic, anxiety, or worry. The modulation 
of vagal tone helps maintain the dynamic autonomic regulation 
important for cardiovascular health. Deficient vagal inhibition is 
implicated in increased morbidity (75).
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HF Power and RSA do not Represent 
vagal Tone
In healthy individuals, RSA can be increased by slow, deep breath-
ing. Respiration rate changes can produce large-scale shifts in 
RSA magnitude without affecting vagal tone, which is mean HR 
change across conditions (e.g., rest to exercise) (76). Grossman 
(76) proposed an experiment. If you slow your breathing to 
6 bpm, you should observe increased HR fluctuations compared 
with 15 bpm. During this time, mean HR should not appreciably 
change because vagal tone did not change.

While HF power indexes vagal modulation of HR, it does not 
represent vagal tone. If shifts in HF power mirrored shifts in vagal 
tone, they should produce corresponding changes in average HR. 
But, breathing at different rates within the 9–24 bpm range, which 
changes HF power, does not change mean HR. RSA and vagal 
tone are dissociated during large-scale changes in SNS activity, 
chemical blockade of the SA node, and when intense vagal efferent 
traffic dramatically slows HR during inhalation and exhalation 
(73). Shifts in respiration rate and volume can markedly change 
HRV indices (HF power, RSA, pNN50, RMSSD) without actually 
affecting vagal tone.

LnHF can estimate vagal Tone under 
Controlled Conditions
The natural logarithm (Ln) is the logarithm to the base e of a 
numeric value. Under controlled conditions while breathing at 
normal rates, we can use LnHF power to estimate vagal tone (77).

LF/HF RATiO

The ratio of LF to HF power (LF/HF ratio) was originally based 
on 24  h recordings, during which both PNS and SNS activity 
contribute to LF power, and PNS activity primarily contributes 
to HF power. The intent was to estimate the ratio between SNS 
and PNS activity (12).

The assumptions underlying the LF/HF ratio is that LF power 
may be generated by the SNS while HF power is produced by the 
PNS. In this model, a low LF/HF ratio reflects parasympathetic 
dominance. This is seen when we conserve energy and engage in  
tend-and-befriend behaviors. In contrast, a high LF/HF ratio 
indicates sympathetic dominance, which occurs when we engage 
in fight-or-flight behaviors or parasympathetic withdrawal.

Billman (21) challenged the belief that the LF/HF ratio meas-
ures “sympatho-vagal balance” (78, 79). First, LF power is not a 
pure index of SNS drive. Half of the variability in this frequency 
band is due to the PNS and a smaller proportion is produced 
by unspecified factors. Second, PNS and SNS interactions are 
complex, non-linear, and frequently non-reciprocal. Third, 
confounding by respiration mechanics and resting HR creates 
uncertainty regarding PNS and SNS contributions to the LF/HF 
ratio during the measurement period.

Shaffer et al. (12) warned that the LF/HF ratio is controversial 
because different processes appear to generate 24 h and 5 min 
values, and these values correlate poorly. Furthermore, the SNS 
contribution to LF power varies profoundly with testing condi-
tions. For example, when LF is calculated while sitting upright  

during resting conditions, the primary contributors are PNS activ-
ity and baroreflex activity—not SNS activity (63, 80). Therefore, 
interpretation of 5 min resting baseline LF/HF ratios depends on 
specific measurement conditions.

NON-LiNeAR MeASUReMeNTS

From Schrödinger’s (81) perspective, life is aperiodic (e.g., oscillations  
occur without a fixed period) and operates between randomness 
and periodicity. Twenty-four-hour ECG monitoring yields a time 
series of R–R intervals (time period between successive heart-
beats). Non-linearity means that a relationship between variables 
cannot be plotted as a straight line. Non-linear measurements 
index the unpredictability of a time series, which results from 
the complexity of the mechanisms that regulate HRV. Non-linear 
indices correlate with specific frequency- and time-domain 
measurements when they are generated by the same processes. 
While stressors and disorders like diabetes can depress some 
non-linear measurements, elevated values do not always signal 
health. For example, in postmyocardial infarction (post-MI) 
patients, increased non-linear HRV is an independent risk fac-
tor for mortality (82). This section reviews S, SD1, SD2, SD1/
SD2, approximate entropy (ApEn), sample entropy (SampEn), 
detrended fluctuation analysis (DFA) α1 and DFA α2, and D2 
non-linear measures (see Table 3).

POiNCARÉ PLOT

A Poincaré plot (return map) is graphed by plotting every R–R 
interval against the prior interval, creating a scatter plot. Poincaré 
plot analysis allows researchers to visually search for patterns 
buried within a time series (a sequence of values from succes-
sive measurements). Unlike frequency-domain measurements, 
Poincaré plot analysis is insensitive to changes in trends in the 
R–R intervals (83).

S, SD1, SD2, AND SD1/SD2

We can analyze a Poincaré plot by fitting an ellipse (curve which 
resembles a squashed circle) to the plotted points. After fitting 
the ellipse, we can derive three non-linear measurements, S, SD1, 
and SD2. The area of the ellipse which represents total HRV (S) 
correlates with baroreflex sensitivity (BRS), LF and HF power, 
and RMSSD.

The standard deviation (hence SD) of the distance of each 
point from the y = x axis (SD1), specifies the ellipse’s width. SD1 
measures short-term HRV in ms and correlates with baroreflex 
sensitivity (BRS), which is the change in IBI duration per unit 
change in BP, and HF power. The RMSSD is identical to the non-
linear metric SD1, which reflects short-term HRV (37). SD1 pre-
dicts diastolic BP, HR Max − HR Min, RMSSD, pNN50, SDNN, 
and power in the LF and HF bands, and total power during 5 min 
recordings (84, 85).

The standard deviation of each point from the y = x + average 
R–R interval (SD2) specifies the ellipse’s length. SD2 measures 
short- and long-term HRV in ms and correlates with LF power 
and BRS (86–89). The ratio of SD1/SD2, which measures the 
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unpredictability of the RR time series, is used to measure auto-
nomic balance when the monitoring period is sufficiently long 
and there is sympathetic activation. SD1/SD2 is correlated with 
the LF/HF ratio (83, 90).

APPROXiMATe eNTROPY

Approximate entropy measures the regularity and complexity of 
a time series. ApEn was designed for brief time series in which 
some noise may be present and makes no assumptions regarding 
underlying system dynamics (9). Applied to HRV data, large 
ApEn values indicate low predictability of fluctuations in succes-
sive RR intervals (91). Small ApEn values mean that the signal is 
regular and predictable (8).

SAMPLe eNTROPY

Sample entropy was designed to provide a less biased and more 
reliable measure of signal regularity and complexity (92). SampEn 
values are interpreted and used like ApEn and may be calculated 
from a much shorter time series of fewer than 200 values (9).

DeTReNDeD FLUCTUATiON ANALYSiS

Detrended fluctuation analysis extracts the correlations between 
successive RR intervals over different time scales. This analysis 
results in slope α1, which describes brief fluctuations, and slope 
α2, which describes long-term fluctuations. The short-term 
correlations extracted using DFA reflect the baroreceptor reflex, 
while long-term correlations reflect the regulatory mechanisms 
that limit fluctuation of the beat cycle. DFA is designed to analyze 
a time series that spans several hours of data (9).

CORReLATiON DiMeNSiON (CD, D2)

The CD (D2) estimates the minimum number of variables required 
to construct a model of system dynamics. The more variables 
required to predict the time series, the greater its complexity. An 
attractor is a set of values toward which a variable in a dynamic 
system converges over time. CD measures a system’s attractor 
dimension, which can be an integer or fractal (9).

CONTeXT iS CRUCiAL wHeN 
iNTeRPReTiNG HRv MeASUReMeNTS

Awareness of the context of recording and subject variables can 
aid interpretation of both 24 h and short-term HRV measure-
ments. Important contextual factors include recording period 
length, detection or recording method, sampling frequency, 
removal of artifacts, respiration, and whether or not there is 
PB. Important subject variables are age, sex, HR, and health 
status. In addition, influences of position, movement, recency 
of physical activity, tasks, demand characteristics, and rela-
tionship variables can all affect measurements subtly or even 
greatly by changing ANS activation, breathing mechanics, and 
emotions.

CONTeXTUAL FACTORS

Period Length
The length of the recording period significantly affects both HRV 
time-domain and frequency-domain measurements (93). Since 
longer recordings are associated with increased HRV, it is inap-
propriate to compare metrics like SDNN when they are calculated 
from epochs of different length (11, 94). Generally, resting values 
obtained from short-term monitoring periods correlate poorly 
with 24 h indices and their physiological meanings may differ (9).

Detection Method
Electrocardiogram and PPG methods yielded discrepancies of 
less than 6% for most HRV measures and 29.9% for pNN50 in 
one study (95).

Sampling Frequency
While a minimum sampling frequency of 500  Hz may be 
required to detect the R-spike fiducial point of the ECG when 
RSA amplitude is low, a sampling rate of 125 Hz (93) or 200 Hz 
(9) may be sufficient when RSA amplitude is normal. Very low 
RR interval variability, which characterizes some heart failure 
patients, requires higher sampling rates for adequate temporal 
resolution (9). Lower sampling rates may threaten the validity of 
HRV frequency-domain and non-linear indices (96).

Removal of Artifacts
Visual inspection of the raw BVP or ECG signal can help detect 
artifacts (e.g., missed or spurious beats). Artifacts can signifi-
cantly distort both time- and frequency-domain measurements 
(97). Artifacts increase power in all frequency bands. Missed 
beats produce greater increases than extra beats since deviation 
from a missed beat equals the mean heart period versus half 
the mean heart period for extra beats. The bias introduced by 
even a single artifact can easily eclipse the 0.5–1.0 Ln effect sizes 
typically found in psychophysiological research (98). When 
artifacts are present, researchers can select an artifact-free epoch 
or manually edit the affected RR intervals (99). When a clean 
segment is shorter than the recommended length for calculating 
power within a frequency band, values should be valid as long as 
it contains at least six full periods of oscillations. For example, 
estimation of LF power requires at least 2.5 min of clean data (9).

Researchers can replace technical artifacts like missed beats 
through interpolation based on QRS intervals that precede and 
follow the contaminated segment. Data analysis software like 
Kubios (8) can help visualize the raw signal and preserve the 
original record length and synchrony with other physiological 
signals (e.g., respiration). The editing of ectopic beats and arrhyth-
mias can be challenging because the resulting changes in stroke 
volume and cardiac output can affect 10–30 beats instead of the 
two RR intervals that bracket the abnormal heartbeat (9).

Respiration
Greater tidal volumes and lower respiration rates increase RSA 
(12, 100). Increasing respiration depth raised HR Max  −  HR 
Min and did not reduce time-domain, frequency-domain, or 
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non-linear HRV measures (101, 102). Increasing or decreasing 
respiration rate from a client’s resonance frequency, the breathing 
rate that best stimulates the cardiovascular system, may lower 
short-term time-domain measurements and LF band power, 
while raising or lowering HF power, respectively.

The effect of inhalation-to-exhalation (I/E) ratio on HRV 
time- and frequency-domain measurements remains unclear. Lin 
et al. (103) reported that breathing at 5.5 bpm with a 5:5 I/E ratio 
resulted in higher LF power than with a 4:6 ratio. However, the 
authors failed to confirm that their subjects actually breathed at 
the required rates and ratios. Zerr et al. (84, 85) studied different 
I/E ratios (1:2 and 1:1) at 6  bpm and performed manipulation 
checks on respiration rate and I/E ratio. They found that HRV 
time- or frequency-domain values were comparable when 
healthy undergraduates breathed 6 bpm at 1:2 or 1:1 I/E ratios. 
A replication study by Meehan et al. (101, 102) also found that 
HRV time- and frequency-domain values were comparable when 
healthy undergraduates breathed at 6 bpm at 1:2 or 1:1 I/E ratios.

Paced Breathing
Values obtained during normal breathing and PB can vary sig-
nificantly (17).

SUBJeCT vARiABLeS

Age
Heart rate variability time-domain measurements decline with 
age (17, 104–106). Bonnemeier et al. (104) obtained 24 h record-
ings from 166 healthy volunteers (85 men and 81 women) ages 
20–70. They found the most dramatic HRV parameter decrease 
between the second and third decades. Almeida-Santos et al. (106) 
obtained 24 h ECG recordings of 1,743 subjects 40–100 years of 
age. They found a linear decline in SDNN, SDANN, and SDNN 
index. However, they discovered a U-shaped pattern for RMSSD 
and pNN50 with aging, decreasing from 40 to 60 and then 
increasing after age 70.

Sex
A meta-analysis of 296,247 healthy participants examined 50 
HRV measures (107). Women had higher mean HR (smaller RR 
intervals) and lower SDNN and SDNN index values, especially in 
24 h studies, compared to men. They showed lower total, VLF, and 
LF power, but greater HF power. While women showed relative 
vagal dominance, despite higher mean HR, men showed relative 
SNS dominance, despite their lower HR.

Heart Rate
Faster HRs reduce the time between successive beats and the 
opportunity for the IBIs to vary. This lowers HRV. Conversely, 
slower HRs increase the time between adjacent heartbeats and 
the chance for IBIs to vary. This raises HRV. This phenomenon 
is called cycle length dependence (1). Resting HRs that exceed 
90 bpm are associated with elevated risk of mortality (108).

Health
Time-domain measurements rise with increased aerobic fit-
ness (109, 110). In general, HRV time-domain measurements 

decline with decreased health (111, 112). Autonomic cardiac 
dysregulation is a critical process that underlies the manifesta-
tion and perpetuation of symptoms broad spectrum symptoms 
of poor health. HRV has been shown to be useful in predicting 
morbidities from common mental (e.g., stress, depression, 
anxiety, PTSD) and physical disorders (e.g., inflammation, 
chronic pain, diabetes, concussion, asthma, insomnia, fatigue), 
all of which increase sympathetic output and create a self-
perpetuating cycle that produces autonomic imbalance and 
greater allostatic load (113–121). Thus, ANS dysfunction is a 
systemic common denominator of poor health and associated 
with acute and chronic illness and a risk factor for such serious 
health issues as cancer survivorship, cardiovascular disease 
and myocardial infarction, stroke, and overall mortality (49, 
75, 122–125).

HRv NORMS

Ultra-Short-Term (UST)  
Measurement Norms
Ultra-short-term HRV measurements are based on less than 
5  min of data (Table  4). Four studies reviewed in this section  
(31, 126–128) measured HRV during resting baselines while sit-
ting upright or lying supine. One study (30) monitored subjects 
during resting baseline and Stroop test conditions.

The use of ultra-short-term recording to estimate HRV status 
is important because of its obvious efficiency in both clinical and 
research settings. However, many of the reviewed ultra-short-
term studies (30, 31, 126, 130) suffered from serious methodo-
logical limitations. Since only one of the studies (128) specified 
their minimum criterion for acceptable concurrent validity  
(e.g., r = 0.9), we cannot know the percentage of variability in 
5  min values for which their ultra-short-term measurements 
accounted. Since correlation between measurements doesn’t 
ensure agreement, the authors recommend that investigators 
utilize the more rigorous Bland-Altman Limits of Agreement 
(LoA) method (131, 132) like Munoz et al. (129). This procedure 
calculates the 95% limits of agreement between two methods of 
measurement for repeated measures.

Review of this emerging literature suggests that differences 
in contextual factors such as recording method (BVP vs. ECG), 
age, health, measurement condition, artifacting procedures, and 
the concurrent-validity criteria used may have greater impact 
on ultra-short-term measurements than on longer recordings. 
Nonetheless, for healthy individuals, resting baselines as short as 
1 min may be sufficient to measure HR, SDNN, and RMSSD as long 
as professionals carefully remove artifacts. The standardization 
of ultra-short-term measurement protocols and establishment of 
normative values for healthy non-athlete, optimal performance, 
and clinical populations remain important challenges to their use 
in place of conventional 5 min and 24 h values.

McNames and Aboy (130) compared 10 s to 10 min resting 
ECG recordings compared to 5  min recordings using archival 
data from PhysioNet. The strongest correlations were achieved 
with HF ms2, SDSD, and RMSSD. Salahuddin et al. (30) obtained 
5 min of resting ECG data from 24 healthy students and noted 
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TABLe 4 | Ultra-short-term (UST) norms.

Studies Subjects HRv 
monitor

Metrics and minimum epoch 
required to estimate short-
term values

Salahuddin 
et al. (30)

24 healthy 
students

Age 22–31

ECG HR and RMSSD-10 s; pNN50, 
HF (ms2 and nu), LF/HF, and LF 
nu-20 s; LF ms2 and VLF ms2-
50 s; SDNN and the coefficient of 
variation-60 s; HTI and TINN-90 s 
to estimate 150 s values

Nussinovitch 
et al. (126)

70 healthy 
volunteers

Age 
42.5 ± 16.1

ECG 10 s and 1 min resting RMSSD 
values correlated with 5 min 
RMSSD values, but 10 s and 
1 min resting SDNN did not 
correlate with 5 min SDNN values

Baek  
et al. (31)

467 healthy 
volunteers

Age 8–69

PPG HR-10 s; HF ms2-20 s; 
RMSSD-30 s; pNN50-60 s; LF 
(ms2 and nu) and HF nu-90 s; 
SDNN-240 s; VLF ms2-270 s to 
estimate 5 min values. Minimum 
values differed by age group

Munoz  
et al. (129)

3,387 adults 
(1,727 W and 
1,660 M)

Mean age 53

Portapres® Near-perfect agreement of 
120 s RMSSD and SDNN values 
with 240–300 s values. UST 
RMSSD values achieved stronger 
agreement with 240–300 s values 
than UST SDNN for all record 
lengths and agreement metrics 
(Pearson r, Bland-Altman, and 
Cohen’s d)

Shaffer  
et al. (128)

38 healthy 
students

Age 18–23

ECG HR-10 s; NN50, and pNN50-
60 s; TINN, LF ms2, SD1, and 
SD2-90 s; HTI and DFA ɑ1-120 s; 
LF nu, HF ms2, HF nu, LF/HF, 
SampEn, DFA ɑ2, and DET-180 s; 
ShanEn-240 s; VLF ms2-270 s to 
estimate 5 min values. No epoch 
estimated CD

Coefficient of variation, ratio of the standard deviation to the mean; CD (also D2), 
correlation dimension, which is the minimum number of variables required to construct 
a model of system dynamics; DET, determinism of a time series; DFAɑ1, detrended 
fluctuation analysis, which describes short-term fluctuations; DFA ɑ2, detrended 
fluctuation analysis, which describes long-term fluctuations; ECG, electrocardiogram; 
HF ms2, absolute power of the high-frequency band; HF nu, relative power of the high-
frequency band in normal units; HR, heart rate; HTI, HRV triangular index or integral of 
the density of the NN interval histogram divided by its height; LF ms2, absolute power 
of the low-frequency band; LF nu, relative power of the low-frequency band in normal 
units; LF/HF, ratio of LF-to-HF power; NN interval, time between adjacent normal 
heartbeats; nu, normal units calculated by dividing the absolute power for a specific 
frequency band by the summed absolute power of the LF and HF bands; pNN50, 
percentage of successive interbeat intervals that differ by more than 50 ms; RMSSD, 
root mean square of successive RR interval differences; RR interval, time between all 
adjacent heartbeats; SampEn, sample entropy, which measures signal regularity and 
complexity; SD1, Poincaré plot standard deviation perpendicular to the line of identity; 
SD2, Poincaré plot standard deviation along the line of identity; SDNN, standard 
deviation of NN intervals; ShanEn, Shannon entropy, which measures uncertainty in a 
random variable; TINN, triangular interpolation of the RR interval histogram or baseline 
width of the RR interval histogram; VLF ms2, absolute power of the very-low-frequency 
band.
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SDNN; the coefficient of variance required 60 s; HRV Index and 
TINN required 90 s; and the Stress Index required 100 s.

Similarly, Baek et  al. (31) estimated 5  min resting PPG 
HRV values from 467 healthy volunteers with ultra-short-term 
recordings. HR required 10  s, HF ms2 required 20  s, RMSSD 
required 30 s, pNN50 required 60 s, LF (ms2 and nu), HF nu, 
and LF/HF ms2 required 90 s, SDNN required 240 s, and VLF 
ms2 required 270  s. These minimum periods also differed by 
age group.

When Nussinovitch et  al. (126) compared 10  s and 1  min 
resting ECG recordings with 5 min recordings from 70 healthy 
volunteers, ultra-short-term RMSSD measurements achieved 
acceptable correlations, but SDNN did not achieve acceptable 
correlations with the longer short-term recordings.

Munoz et  al. (129) measured SDNN and RMSSD in 3,387 
adults and analyzed data using Pearson’s correlation coefficients, 
the Bland-Altman LoA method, and Cohen’s d. At 120 s, record-
ings achieved nearly perfect agreement with 240–300  s values 
(r = 0.956, bias = 0.406 for SDNN and 0.986, bias = 0.014 for 
RMSSD).

Shaffer et al. (128) recorded 5 min of resting ECG data from 
38 healthy undergraduates and manually artifacted the IBIs. They 
correlated 10, 20, 30, 60, 90, 120, 180, and 240  s HRV metrics 
with 5 min metrics. The authors selected a conservative criterion 
of r = 0.90 to ensure that ultra-short-term values would account 
for at least 81% of the variability in 5 min values. A 10 s segment 
estimated mean HR. A 60 s segment measured SDNN, RMSSD, 
NN50, and pNN50. A 90  s segment calculated TINN, LF ms2, 
SD1, and SD2. A 120 s segment approximated HTI and DFA ɑ1. 
A 180 s segment computed LF nu, HF ms2, HF nu, LF/HF ms2, 
SampEn, DFA ɑ2, and DET. A 240 s segment assessed ShanEn. No 
UST measurement successfully estimated CD.

SHORT-TeRM MeASUReMeNT NORMS

Short-term measurement norms are based on ~5 min of HRV 
data (Table 5). Because of their relative ease of recording, short-
term measurements have been widely used and studied for 
many years, and appear to be the most commonly found source 
of published HRV data (11, 60). Short-term values are only 
appropriate when clients breathe at normal rates (~11–20 bpm). 
During resonance frequency biofeedback, the only relevant 
metrics are LF ms2 or peak frequency since breathing from 4.5 
to 7.5 bpm concentrates HR oscillations around 0.1 Hz in the 
LF band.

Berkoff et al. (133) reported short-term norms from 145 elite 
track-and-field athletes (87 men and 58 women), 18–33  years, 
who were measured before the 2004 USA Olympic Trials. The 
investigators monitored the athletes in the supine position for 
2.5 min using ECG after up to 5 min of rest to stabilize HR. These 
authors used the Fast Fourier transformation (FFT) method 
to perform power spectral analysis. They reported mean and 
standard deviation values by sex for the time-domain measures 
of SDNN, RMSSD, and pNN50 and the frequency-domain meas-
ures of LF (ms2 and nu), HF (ms2 and nu), LF/HF (LF/HF and LF/
HF nu), and total power. Female athletes showed greater values 

that valid estimation of values from ultra-short-term recordings 
required differing lengths for different HRV variables: mean HR 
and RMSSD required 10 s; PNN50, HF (ms2 and nu), LF/HF, and 
LF nu required 20 s; LF ms2 required 30 s; VLF ms2 required 50 s; 
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TABLe 6 | Nunan et al. (17) short-term norms.

HRv measure Mean (SD) Range Studies

IBI (ms) 926 (90) 785–1,160 30
SDNN (ms) 50 (16) 32–93 27
RMSSD (ms) 42 (15) 19–75 15
LF (ms2) 519 (291) 193–1,009 35
LF (nu) 52 (10) 30–65 29
HF (ms2) 657 (777) 83–3,630 36
HF (nu) 40 (10) 16–60 30
LF/HF (ms2) 2.8 (2.6) 1.1–11.6 25

IBI, interbeat interval; SDNN, standard deviation of NN intervals; RMSSD, root mean 
square of successive RR interval differences; LF ms2, absolute power of the low-
frequency band; LF nu, relative power of the low-frequency band in normal units; HF 
ms2, absolute power of the high-frequency band; HF nu, relative power of the high-
frequency band in normal units; LF/HF, ratio of LF-to-HF power.
Reproduced with permission of John Wiley and Sons.

TABLe 5 | Short-term ECG norms.

Studies Subjects Spectral 
analysis

Breathing Sample Position Metrics

Berkoff  
et al. (133)

145 elite athletes (87 M and 58 W) 
age 18–33

FFT Free 2.5 min Supine SDNN, RMSSD, pNN50, LF (ms2 and nu), HF (power and nu), 
LF/HF (% and nu), and total power

Nunan  
et al. (17)

21,438 healthy adults (12,960 M 
and 8,474 W) age ≥ 40

AR and FFT Free/paced Varied Varied RR, SDNN, RMSSD, LF (ms2 and nu), HF (ms2 and nu),  
and LF/HF

Abhishekh  
et al. (105)

189 healthy adults (114 M and 
75 W) age 16–60

Free 5 min Supine SDNN, RMSSD, LF (ms2and nu), HF (ms2 and nu), LF/HF,  
and total power (ms2)

Seppälä  
et al. (134)

465 prepubertal children (239 B) 
and 226 G age 6–8

FFT Free 5 min Supine RR, HR, SDNN, RMSSD, pNN50, HTI, TINN, LF (peak, ms2, 
%), HF (peak, ms2, %), LF/HF, SD1, SD2, SD1/SD2, SampEn, 
D2, DFA (α1 and α2) for 5th, 25th, 50th, 75th, and 95th percentiles

D2 (also CD), correlation dimension, which estimates the minimum number of variables required to construct a model of a studied system; DFA ɑ1, detrended fluctuation analysis, 
which describes short-term fluctuations; DFA ɑ2, detrended fluctuation analysis, which describes long-term fluctuations; ECG, electrocardiogram; HF ms2, absolute power of the 
high-frequency band; HF nu, relative power of the high-frequency band in normal units; HF peak, highest amplitude frequency in the HF band; HF%, HF power as a percentage of 
total power; HR, heart rate; HTI, HRV triangular index or integral of the density of the NN interval histogram divided by its height; LF ms2, absolute power of the low-frequency band; 
LF nu, relative power of the low-frequency band in normal units; LF peak, highest amplitude frequency in the LF band; LF%, LF power as a percentage of total power; LF/HF, ratio 
of LF-to-HF power; NN interval, time between adjacent normal heartbeats; nu, normal units calculated by dividing the absolute power for a specific frequency band by the summed 
absolute power of the LF and HF bands; pNN50, percentage of successive interbeat intervals that differ by more than 50 ms; RMSSD, root mean square of successive RR interval 
differences; RR interval, time between all adjacent heartbeats; SampEn, sample entropy, which measures signal regularity and complexity; SD1, Poincaré plot standard deviation 
perpendicular to the line of identity; SD2, Poincaré plot standard deviation along the line of identity; SD1/SD2, ratio of SD1 to SD2 that measures the unpredictability of the R–R 
time series and autonomic balance under appropriate monitoring conditions; SDNN, standard deviation of NN intervals; TINN, triangular interpolation of the RR interval histogram or 
baseline width of the RR interval histogram; total power, sum of power (ms2) in VLF, LF, and HF bands.
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for pNN50 and HF nu than male athletes. Male athletes showed 
greater values for LF nu and LF/HF ratio than female athletes. 
Type of sport (distance runners, field athletes, power athletes, 
sprinters, and strength athletes) did not affect HRV measures.

Normative data from short-term HRV studies published 
after the Task Force Report (11) were reviewed by Nunan 
et al. (17) (Table 6). The 44 selected studies meeting their cri-
teria involved 21,438 healthy adult participants. This analysis 
included three large populations with a minimum age of 40 
(135–137) which may explain their comparatively lower HRV 
values. The authors reported HRV values according to whether 
breathing was free or paced, sex, and spectral power analysis, 
autoregressive (AR) or FFT. They reported mean absolute and 
mean log-transformed values for mean RR, SDNN, RMSSD, 
LF (ms2 and nu), HF (ms2 and nu), and the LF/HF ratio. The 
selected studies showed greater agreement on time-domain 
measures (SDNN had the lowest coefficient of variation) than 
did frequency-domain measures (HF ms2 and log-transformed 
HF showed the largest variation). The FFT method resulted in 
lower LF power, greater HF power (ms2 and log-transformed), 
and greater LF/HF ratio than the AR method. PB resulted in 
higher values on all HRV indices except LF ms2, which was 
greatest during free breathing.

More recently, Abhishekh et  al. (105) studied 189 healthy 
participants (114 men and 75 women) who ranged from 16 to 
60  years of age. They analyzed 5  min artifact-free supine ECG 
recordings obtained while participants breathed between 12 
and 15  bpm. They reported SDNN and RMSSD time-domain 
measures, and LF (ms2 and nu), HF (ms2 and nu), the LF/HF 
ratio, and total power frequency-domain measures. The authors 
found a negative correlation of RMSSD, SDNN, and total power 
with age. While HF nu was negatively correlated with age, LF/HF 
ratio was positively correlated. These correlations suggested that 
sympathetic tone increases with age.

Seppälä et al. (134) monitored 465 prepubertal children (239 
boys and 226 girls) 6–8 years of age. They obtained 1 and 5 min 
resting ECG recordings. They performed power spectral analysis 
using the FFT method. They reported mean RR interval and HR, 
SDNN, RMSSD, pNN50, HTI, and TINN HRV time-domain 
measures, LF (peak, ms2, and %), HF (peak, ms2, and %), LF/HF 
ms2, and SD1, SD2, SD1/SD2, SampEn, D2, and DFA (α1 and α2) 
non-linear measures. The authors reported 1 and 5 min reference 
values for these parameters for the 5th, 25th, 50th, 75th, and 95th 
percentiles and concluded that the same values could be used for 
both boys and girls since there were no gender differences. They 
argued that HRV parameters that reflect parasympathetic HR 
modulation (RMSSD, pNN50, HF ms2, and SD1) could be reliably 
measured using 1 min recordings. However, HTI, TINN, LF ms2, 
SD2, and relative LF and HF power, and SD1/SD2, require 5 min 
recordings due to the longer rhythms that comprise LF-band 
activity.

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


TABLe 7 | Twenty-four-hour HRV norms.

Studies Subjects Metrics

Task Force  
Report (11)

274 healthy subjects 
(202 M and 72 F), age 
40–69 

24 h SDNN, SDANN, RMSSD, HTI 
and 5 min supine LF power (ms2 
and nu), HF power (HF ms2 and HF 
nu), LF/HF power, and total power

Umetani  
et al. (32)

260 healthy subjects 
(122 M and 148 W), age 
10–99

SDNN, SDANN, SDNNI, RMSSD, 
pNN50, and HR by decade

Beckers  
et al. (4)

276 healthy subjects 
(141 M and 135 W), age 
18–71

SDNN, RMSSD, and pNN50, total 
power, LF (ms2 and %), HF (ms2 
and %), and LF/HF ratio, and non-
linear measures, 1/f, FD, DFA α1 
and α2, CD, S, and LE

Bonnemeier  
et al. (139)

166 healthy subjects 
(85 M and 81 W), age 
20–70

RMSSD, SDNN, SDNNI, SDANN, 
NN50, and HTI

Aeschbacher  
et al. (140)

2,079 subjects (972 M 
and 1,107 W), age 25–41

HR, SDNN, LF ms2 and HF ms2

Almeida-Santos 
et al. (106)

1,743 subjects (616 M 
and 1,127 W), age 
40–100

SDNN, SDANN, SDNNI, RMSSD, 
and pNN50

1/f, 1 divided by frequency slope, which characterizes the shape of the HRV frequency 
spectrum; CD, correlation dimension, which estimates the minimum number of 
variables required to construct a model of a studied system; DFA ɑ1, detrended 
fluctuation analysis, which describes short-term fluctuations; DFA ɑ2, detrended 
fluctuation analysis, which describes long-term fluctuations; ECG, electrocardiogram; 
FD, signal regularity; HF ms2, absolute power of the high-frequency band; HF nu, 
relative power of the high-frequency band in normal units; HF peak, highest amplitude 
frequency in the HF band; HF%, HF power as a percentage of total power; HR, heart 
rate; HTI, HRV triangular index or integral of the density of the NN interval histogram 
divided by its height; LE, Lyapunov exponent, which measures a non-linear system’s 
sensitive dependence on starting conditions; LF ms2, absolute power of the low-
frequency band; LF nu, relative power of the low-frequency band in normal units; LF 
peak, highest amplitude frequency in the LF band; LF%, LF power as a percentage of 
total power; LF/HF, ratio of LF-to-HF power; NN interval, time between adjacent normal 
heartbeats; nu, normal units calculated by dividing the absolute power for a specific 
frequency band by the summed absolute power of the LF and HF bands; pNN50, 
percentage of successive interbeat intervals that differ by more than 50 ms; RMSSD, 
root mean square of successive RR interval differences; RR interval, time between all 
adjacent heartbeats; S, area of an ellipse fitting a Poincaré plot, which represents total 
HRV; SampEn, sample entropy, which measures signal regularity and complexity; SD1, 
Poincaré plot standard deviation perpendicular to the line of identity; SD2, Poincaré 
plot standard deviation along the line of identity; SD1/SD2, ratio of SD1 to SD2 that 
measures the unpredictability of the RR time series and autonomic balance under 
appropriate monitoring conditions; SDNN, standard deviation of NN intervals; TINN, 
triangular interpolation of the RR interval histogram or baseline width of the RR interval 
histogram; total power, sum of power (ms2) in ULF, VLF, LF, and HF bands.

11

Shaffer and Ginsberg An Overview of HRV Metrics and Norms

Frontiers in Public Health | www.frontiersin.org September 2017 | Volume 5 | Article 258

TweNTY-FOUR HOUR MeASUReMeNT 
NORMS

Twenty-four-hour norms are obtained using ambulatory HRV 
monitoring (Table 7). The technology for recording and interpret-
ing long-term “naturalistic” HR adjustments is rapidly advancing 
and the subject of another article in this issue (138). In the classic 
paper on the subject, The Task Force Report (11) reported 24 h 
norms for 144 healthy subjects that included cutoffs for moder-
ately depressed and highly depressed HRV and for increased risk 
of mortality. The authors reported 24 h time-domain measures of 
SDNN, SDANN, RMSSD, and the HRV HTI, and supine 5 min 

frequency-domain measures for LF power (LF ms2 and nu),  
HF power (HF ms2 and nu), LF/HF power, and total power (ms2).

Umetani et  al. (32) published 24  h norms for 260 healthy 
participants (112 men and 148 women) who ranged from 10 to 
99 years old. The authors reported means, standard deviations, 
and 95% confidence intervals for 24 h HRV time-domain meas-
ures of SDNN, SDANN, SDNN index, RMSSD, and pNN50, and 
HR by decade. They analyzed the relationship between each HRV 
time-domain measure with HR and age, compared HR and HRV 
measures between decades and two-decade spans. They reported 
that several HRV time-domain indices declined with age. After 
age 65, subjects fell below cutoffs for increased threat of mortal-
ity. Before age 30, female subjects had lower HRV measurements 
than their male counterparts. This gender difference vanished 
after 50 years of age.

Beckers et al. (4) obtained 24 h ECG recordings of 276 healthy 
participants (141 men and 135 women) 18–71 years of age. They 
performed power spectral analysis using the FFT method and 
divided the 24  h recordings into daytime and nighttime. The 
authors reported day and night time-domain measures, SDNN, 
RMSSD, and pNN50, frequency-domain measures, total power 
(ms2), LF (ms2 and %), HF (ms2 and %), and LF/HF ratio, and non-
linear measures, 1/frequency slope (1/f), fractal dimension (FD), 
DFA α1 and α2, CD, % of CD difference, S value, and Lyapunov 
exponent. Both linear and non-linear metrics decreased with age. 
The authors found that non-linear values were higher at night, did 
not differ by sex, and decreased with age.

Bonnemeier et al. (139) recorded 24 h ECG for 166 healthy 
volunteers (85 men and 81 women) aged 20–70. They obtained 
hourly and 24 h RMSSD, SDNN. SDNNI, SDANN, NN50, and 
HTI values. All 24 h HRV values declined with age. The attenua-
tion of HRV parameters with age mainly occurred during night-
time. The largest decrease occurred during the second and third 
decades. Following this drop, the decline was gradual. SDNNI, 
NN50, and RMMSD correlated most strongly with aging. Mean 
24 h RR interval, SDNN, SDNNI (SD for all 5 min intervals) and 
SDANN were significantly higher in men. Gender differences 
diminished with age.

Aeschbacher et  al. (140) recorded 24  h ambulatory ECGs 
and assessed the lifestyles of 2,079 subjects (972 men and 1,107) 
aged 25–41. They obtained HR, SDNN, and LF and HF power. 
SDNN was 160 ± 40 (men) and 147 ± 36 (women). LF power was 
1,337 ms2 (men) and 884 ms2 (women). HF power was 289 ms2 
(men) and 274 ms2 (women). The authors reported that only a 
minority of their sample had healthy lifestyles and that lifestyle 
scores were associated with 24 h SDNN values.

Almeida-Santos et  al. (106) obtained 22–24  h ambulatory 
ECGs from 1,743 participants (616 men and 1,127 women) 
aged 40–100. While their sample included comorbidities like 
dyslipidemia and hypertension, they were capable of perform-
ing the activities of daily living. The authors calculated HRV 
time-domain measures of SDNN, SDANN, SDNNI, RMSSD, 
and pNN50. HRV linearly declined with age. SDNN, SDANN, 
SDNNI, RMSSD, and PNN50 were higher in men than women. 
RMSSD and pNN50 showed a U-shaped pattern with aging, 
decreasing from 40 to 60 and then increasing from 70. The 
authors concluded that global autonomic regulation decreases 
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linearly with aging and is lower in men, diabetics, and obese 
individuals.

ASSeSSMeNT iN CLiNiCAL AND 
OPTiMAL PeRFORMANCe 
iNTeRveNTiONS

The selection of HRV time-domain, frequency-domain, and non-
linear measurements and norms to assess progress in clinical and 
optimal performance interventions should be informed by peer-
reviewed studies. Professionals training specialized populations 
(e.g., chronic pain patients) might supplement published norms 
for the general population with values from their own clients. The 
rigorous data reporting guidelines proposed by Laborde et al. (93) 
could guide their efforts to publish their norms to remedy gaps in 
the literature. The metrics most strongly correlated with clinical 
improvement and athlete performance gains in these reports 
could be incorporated in pretreatment/posttreatment, within-
session, and across-session assessment. While a full treatment of 
HRV variables in relation to the HRV biofeedback intervention is 
beyond the scope of this article, we will briefly touch on the issues 
that seem to us to be the key ones (141).

In addition to the primary literature, the Association for Applied 
Psychophysiology and Biofeedback has published two references 
that identify metrics associated with clinical and optimal per-
formance outcomes, Evidence-Based Practice in Biofeedback and 
Neurofeedback (3rd ed.) and Foundations of Heart Rate Variability 
Biofeedback: A Book of Readings (142, 143). Further, readers 
might consult Gevirtz, Lehrer, and Schwartz’s excellent chapter on 
Cardiorespiratory Biofeedback in Schwartz and Andrasik’s (Eds.) 
Biofeedback: A Practitioner’s Guide (4th ed.).

PReTReATMeNT/POSTTReATMeNT 
ASSeSSMeNT

Twenty-four-hour HRV monitoring before and after a series of 
HRV biofeedback training sessions provides the most valid meas-
urements of ULF, VLF, total power, and LF/HF-domain indices 
(12). Moreover, 24  h time-domain measurements like SDNN 
achieve prognostic power that ultra-short-term and short-term 
measurements cannot. Successful HRV biofeedback should result 
in increased power in all individual frequency bands, total power, 
and LF/HF ratio, and relevant time-domain and non-linear 
values.

Where 24  h HRV assessment is not feasible, short-term 
(~5 min) resting measurements without feedback or pacing, and 
while breathing at normal rates can help evaluate physiological 
change. Successful HRV biofeedback should increase LnHF 
(which may index vagal tone under controlled conditions), RSA, 
and possibly LF and total power, and relevant time-domain and 
non-linear values. Autonomic (finger temperature and skin con-
ductance/potential) and respiratory (end-tidal CO2 and respira-
tion depth, rate, and rhythmicity) indices can complement HRV 
measurements. Successful HRV biofeedback may increase finger 
temperature, decrease skin conductance/potential, increase end-
tidal CO2 to between 35 and 45 torr, increase respiration depth, 

slow respiration rate below 16 bpm, and increase rhythmicity in 
respirometer and HR waveforms (144).

wiTHiN- AND ACROSS-SeSSiON 
ASSeSSMeNT

Short-term resting HRV, autonomic, and respiratory measure-
ments without feedback or pacing, and while breathing at normal 
rates can be obtained during pre- and posttraining baselines for 
within-session assessment or across the pretraining baselines of 
successive sessions. For both within- and across-session assess-
ment, successful HRV biofeedback training should result in the 
same pattern of physiological change as described the previous 
section on short-term resting pretreatment/posttreatment assess-
ment. While increased VLF power in 24  h HRV assessment is 
consistent with improved health, this change during short-term 
assessment may indicate training difficulty, vagal withdrawal, due 
to excessive effort (56). Where short-term assessment does not 
involve physical exercise or stress trials, the LF/HF ratio may not 
index of autonomic balance since there will be no significant SNS 
activation to measure (12).

ASSeSSMeNT DURiNG HRv 
BiOFeeDBACK TRiALS

During HRV biofeedback training, adults may be instructed to 
engage in paced abdominal breathing between 4.5 and 7.5 bpm 
guided by a real-time display of instantaneous HR and respiration. 
As clients’ breathing approaches their resonance frequency, the 
rate that most strongly stimulates their baroreceptor reflex, RSA 
will increase (141). Since respiration rate helps to determine the 
peak HRV frequency (the frequency with the highest amplitude), 
successful training should produce a lower peak frequency and 
greater LF power than a resting baseline obtained when clients 
breathe from 12 to 15 bpm. PB at 6 bpm should result in a spectral 
peak at 0.1 Hz, while breathing at 7.5 bpm should create a peak 
at 0.125 Hz. Both 6 and 7.5 bpm rates will also increase power in 
the LF, which ranges from 0.04 to 0.15 Hz.

SUMMARY

Autonomic efferent neurons and circulating hormones modulate 
SA node initiation of heartbeats. The interdependent regula-
tory systems that generate the complex variability of a healthy 
heart operate over different time scales to achieve homeostasis 
and optimal performance. Circadian oscillations in circadian 
variations in core body temperature, metabolism, sleep–wake 
cycles, and the renin–angiotensin system contribute to 24 h HRV 
measurements. The complex dynamic relationship between the 
sympathetic and parasympathetic branches, and homeostatic 
regulation of HR via respiration and the baroreceptor reflex are 
responsible for short-term and ultra-short-term HRV measure-
ments. Since slower regulatory mechanisms contribute to HRV 
metrics recorded over longer measurement periods, 24 h, short-
term, and ultra-short-term values are not interchangeable.
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Clinicians and researchers measure HRV using time-domain, 
frequency-domain, and non-linear indices. Time-domain values 
measure how much HRV was observed during the monitoring 
period. Recording period length strongly influences time-domain 
values. Shorter epochs are associated with smaller values and 
poorly estimate 24 h values (17). For example, where 24 h SDNN 
values predict future heart attack risk, 5  min SDNN values do 
not (12).

Frequency-domain values calculate absolute or relative signal 
power within the ULF, VLF, LF, and HF bands. Recording period 
length limits HRV frequency-band measurement. Minimum 
recommended periods include: ULF (24  h), VLF (5  min, 24  h 
preferred), LF (2 min), and HF (1 min). Again, short-term epochs 
(~5 min) lack the prognostic power of 24 h measurements for 
morbidity and mortality.

Non-linear indices measure the unpredictability and com-
plexity of a series of IBIs. The relationship between non-linear 
measurements and illness is complex. While stressors and disease 
lower some non-linear indices, in cases like myocardial infarc-
tion, higher non-linear HRV predicts a greater risk of mortality.

The expanding literature on ultra-short-term, short-term, and 
24 h HRV norms requires careful interpretation. Due to the lack 
of standardization of ultra-short-term measurement protocols, 
concurrent validity criteria, and normative values for healthy 
non-athlete, optimal performance, and clinical populations, 
clinicians should not use ultra-short-term interchangeably with 
5 min and 24 h values.

Short-term measurement norms can contribute to assessment 
before, during, and after HRV biofeedback training for both 
clinical and optimal performance. Since short-term measure-
ment norm studies vary in detection method (ECG or PPG), 
frequency-band cutoffs, power spectral analysis method (AR or 
FFT), position (sitting upright or lying supine), respiration rate, 

and breathing pacing (paced or free breathing) and subject sex, 
age, and aerobic fitness, the selection of appropriate norms is 
crucial. Likewise, 24 h HRV norms can guide HRV biofeedback 
training for clinical and optimal performance. As with short-term 
measurement norms, frequency-band cutoffs, power spectral 
analysis method (AR or FFT), and subject sex, age, and aerobic 
fitness can help to determine the selection of reference values.

The selection of HRV time-domain, frequency-domain, and 
non-linear metrics to assess progress in clinical and optimal per-
formance interventions can be guided by peer-reviewed studies 
and supplemented by values from specialized populations. The 
HRV metrics most strongly correlated with clinical improve-
ment and athlete performance gains in these reports might be 
incorporated in pretreatment/posttreatment, within-session, and 
across-session assessment. Finally, LF-band power and RSA will 
increase during successful HRV biofeedback trials due to PB in 
the 4.5–7.5 bpm range.
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